miércoles, 18 de diciembre de 2013

Teorema de Taylor

Este teorema permite aproximar una función derivable en el entorno reducido alrededor de un punto a: Є (a, d) mediante un polinomio cuyos coeficientes dependen de las derivadas de la función en ese punto. Más formalmente, si \ n ≥ 0 es un entero y \ f una función que es derivable \ n veces en el intervalo cerrado [\ a, \ x] y \ n+1 veces en el intervalo abierto (\ a, \ x), entonces se cumple que:


  f(x) = f(a)
  + \frac{f'(a)}{1!}(x - a)
  + \frac{f^{(2)}(a)}{2!}(x - a)^2
  + \cdots
  + \frac{f^{(n)}(a)}{n!}(x - a)^n
  + R_n(f)
O en forma compacta

 f(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x - a)^k + R_n(f)
Donde \ k! denota el factorial de \ k, y R_n(f)\, es el resto, término que depende de \ x y es pequeño si \ x está próximo al punto \ a. Existen dos expresiones para \ R que se mencionan a continuación:


R_n(f) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}
donde \ a y \ x, pertenecen a los números reales, \ n a los enteros y \ \xi es un número real entre \ a y \ x:


R_n(f) = \int_a^x \frac{f^{(n+1)} (t)}{n!} (x - t)^n \, dt
Si R_n(f)\, es expresado de la primera forma, se lo denomina Término complementario de Lagrange, dado que el Teorema de Taylor se expone como una generalización del Teorema del valor medio o Teorema de Lagrange, mientras que la segunda expresión de R muestra al teorema como una generalización del Teorema fundamental del cálculo integral.
Para algunas funciones \ f(x), se puede probar que el resto, \ R_n(f), se aproxima a cero cuando \ n se acerca al ∞; dichas funciones pueden ser expresadas como series de Taylor en un entorno reducido alrededor de un punto \ a y son denominadas funciones analíticas.
El teorema de Taylor con \ R_n(f) expresado de la segunda forma es también válido si la función \ f tiene números complejos o valores vectoriales. Además existe una variación del teorema de Taylor para funciones con múltiples variables.

No hay comentarios:

Publicar un comentario